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Supporting	Information	Methods	S1-S7.	

Methods	S1.	RNAseq	library	preparation	

Prior	to	RNAseq	library	preparation,	the	quality	of	the	isolated	RNA	was	evaluated	

with	both	Qubit	Fluorometric	Quantitation	(Thermo	Fisher	Scientific,	Waltham,	MA,	

USA)	and	Bioanalyzer	analysis	(Agilent	Technologies,	Inc.,	Santa	Clara,	CA,	USA)	

(Supplementary	Table	S4).	The	cDNA	library	from	the	metatranscriptome	was	

prepared	with	the	Illumina	TruSeq	Stranded	mRNA	library	Prep	kit	(Illumina	Inc.,	

San	Diego,	CA,	USA	)	following	manufacturer’s	protocol.	The	nine	barcoded	cDNA	

libraries	(three	layers	by	three	mats)	were	pooled	together	and	sequenced	using	

one	Illumina	HiSeq	2500	lane	(125	bp	paired	end)	at	the	Duke	Center	for	Genomic	

and	Computational	Biology.	

Methods	S2.	nrLSU	cDNA	library	preparation	for	amplicon	sequencing	

Amplicon	sequencing	was	not	performed	for	the	bryophyte	mat	sampled	at	

microsite	1	because	insufficient	RNA	remained	after	the	RNAseq	library	preparation	

of	that	collection.	To	prepare	cDNA	libraries	for	amplicon	sequencing,	the	RNA	

extractions	were	first	treated	with	RNase-free	DNase	(Qiagen,	Hilden,	Germany).	

The	dNTPs	and	primers	were	diluted	in	Diethylpyrocarbonate	(DEPC)-treated	

water.	Eight	microliters	of	RNA	(RNA	concentration	35.98	±	SD	13.31	ng/μl)	were	

used	for	each	sample.	The	RNA	was	reverse	transcribed	to	a	cDNA	library	with	the	

SuperScriptâ	IIReverse	Transcriptase	kit	(Sigma)	using	the	LR3	primer	following	

the	manufacturer’s	instruction,	yielding	cDNAs	with	concentrations	of	2160	±	SD	

207.75	(ng/μl)	across	the	six	samples.	When	preparing	MiSeq	libraries,	each	25	µl	

reaction	consisted	of	0.5	unit	Qiagen	HotStart	Plus	polymerase	(Qiagen,	Hilden,	

Germany),	1X	Qiagen	PCR	buffer,	0.16	mM	(each)	deoxynucleoside	triphosphates	

(dNTPs),	0.75	mM	MgCl2,	0.6	mM	forward	and	reverse	primers,	1	mg/mL	bovine	

serum	albumin	(BSA).		For	the	first	PCR	round	1	µl	of	DNA	was	used	as	DNA	

template.	For	the	second	PCR	round,	2µl	of	PCR	product	from	round	1	was	used	for	



as	DNA	template.	In	the	third	PCR	round,	10µl	of	PCR	product	was	used	as	DNA	

template.	Thermocycler	settings	were	5	min	at	95	°C,	then	10	cycles	of	95	°C	for	1	

min,	52	°C		for	2	min,	and	72	°C	for	2	min	extension,	with	a	final	extension	for	10	min	

at	72	°C.	Prepared	libraries	were	normalized,	were	pooled	with	other	libraries	(239	

libraries	in	total),	and	unincorporated	primers,	dNTPs	and	primer	dimers	were	

removed	by	two	successive	rounds	of	cleaning	using	the	Agencourt	AMPure	

purification	system	(Beckman	Coulter,	Danvers,	MA,	USA).	Pooled	amplicon	libraries	

were	sequenced	as	part	of	one	Illumina	MiSeq	run	(300	bp	paired	end).		

Methods	S3.	Additional	information	on	RNAseq	data	quality	checking	and	

processing		

Trimmomatic	(Bolger	et	al.,	2014)	was	used	to	perform	quality	filtering	and	adaptor	

trimming	(Supplementary	Method	S5).	Bases	were	cut	when	the	average	quality	of	

the	4-base	sliding	window	drop	below	Phred=15.	FastQC	in	the	Galaxy	portal	was	

used	to	examine	the	quality	of	the	reads	(Blankenberg	et	al.,	2010).	All	

metatranscriptome	mapping	procedures	were	performed	with	Bowtie2	with	default	

parameters	(default	settings	see	Bowtie2	manual	v2.2.6	[http://bowtie-

bio.sourceforge.net/bowtie2/manual.shtml]).	Samtool	(Li	et	al.,	2009)	was	used	to	

generate	mapping	reports	and	map	sequences	to	the	targeted	reference.	

Methods	S4.	MiSeq	amplicon	sequence	processing	

We	first	trimmed	the	adaptors	using	cutadapt	with	10%	mismatch	allowance	

(Martin,	2011)	followed	by	quality	filtering	with	USEARCH	(Edgar,	2013).	All	reads	

were	truncated	to	150	bp	with	the	maximum	error	rate	allowance	of	0.25.	Prior	to	

clustering	reads	into	operational	taxonomic	units	(OTU),	all	samples	were	pooled	

together	and	singletons	were	removed.	OTUs	were	clustered	based	on	97%	

similarity	using	UPARSE.	De	novo	chimera	filtering	and	representative	sequence	

selection	were	part	of	the	OTU	clustering	process.	OTU	tables	were	generated	by	

mapping	original	reads	(before	the	removal	of	singletons)	to	the	representative	

sequences	with	97%	similarity	(see	Supplementary	Method	S5	for	scripts).		



Methods	S5.	Scripts	for	bioinformatics	

The	programs	or	resources	used	are	in	bold	and	italic.	The	purposes	of	the	scripts	

are	in	bold.	Scripts	are	preceded	by	the	pound	(#)	sign.				

GenBank	(NCBI)	search	

Terms	for	NCBI	database	search	when	constructing	primary	database	

#	(fungi[Organism])	AND	(5S	or	18S	or	"Small	Subunit	ribosomal"	or	"internal	

transcribed"	or	LSU	or	SSU	or	ITS	or	5.8s	or	28s	or	25s	or	26s	or	"Large	Subunit	

ribosomal")	NOT	(supercont	OR	shotgun	OR	supercontig	OR	contig	OR	mRNA	OR	

beta-tubulin	OR	hypothetical	OR	uncultured	OR	clone	OR	snoRNA	OR	Patent	OR	ORF	

OR	-like	OR	NTS)	

Trimmomatic	

For	quality	check	and	trimming	of	RNAseq	reads	

#java	-jar	trimmomatic-0.32.jar	PE	example_R1.gz	example_R2.gz	

1T_forward_paired.fq.gz	1T_forward_unpaired.fq.gz	1T_reverse_paired.fq.gz	

1T_reverse_unpaired.fq.gz	ILLUMINACLIP:TruSeq3-PE.fa:2:28:10	LEADING:3	

TRAILING:3	SLIDINGWINDOW:4:15	MINLEN:36	

cutadapt	

For	amplicon	sequencing	LR0R	adaptor	removal:	

#	./cutadapt	-g	

GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNNNNNNNNNGAACCCGCT

GAACTTAAGC	-o	example_trimmed.fastq	example.fastq	--untrimmed-output	

example_untrimmed.fastq	

For	amplicon	sequencing	LR3	adaptor	removal:	

#	./cutadapt	-g	

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNNNCACCGTGTTTCA



AGACGGG	-o	example_trimmed.fastq	example.fastq	--untrimmed-output	

example_untrimmed.fastq	

For	metatranscriptome	primary	library	preparation-checking	LR0R+LR15	

#./cutadapt	-g	GTCCGAGTTGTAATTTA	-e	0.15	-o	

contain_LR15_GenBank_ref_11302015.fasta	--no-trim	--overlap=12	--minimum-

length	100	--untrimmed-output	untrimmedLR15_LROR_GenBank_ref_11302015.fas	

GenBank_ref_11302015.fasta	

#./cutadapt	-g	ACCCGCTGAACTTAAGC	-e	0.15	-o	

contain_LR15+LROR_GenBank_ref_11302015.fasta	--overlap=12	--minimum-length	

100	--untrimmed-output	untrimmed_LROR_GenBank_ref_11302015.fasta	

contain_LR15_GenBank_ref_11302015.fasta	

For	metatranscriptome	primary	library	preparation-checking	ITS4+LR3	

#./cutadapt	-a	GTCTTGAAACACGGACC	-e	0.15	-o	

contain_LR3_GenBank_ref_11302015.fasta	--no-trim	--overlap=12	--minimum-

length	100	--untrimmed-output	untrimmedLR3_LROR_GenBank_ref_11302015.fas	

GenBank_ref_11302015.fasta	

#./cutadapt	-g	ACCCGCTGAACTTAAGC	-e	0.15	-o	

contain_LR3+LROR_GenBank_ref_11302015.fasta	--overlap=12	--minimum-length	

100	--untrimmed-output	untrimmed_LROR_GenBank_ref_11302015.fasta	

contain_LR3_GenBank_ref_11302015.fasta	

Check	sequences	with	LR3,	then	trimmed	with	LR0R	

#./cutadapt	-a	GTCTTGAAACACGGACC	-e	0.15	--overlap=12	-o	

LSU_DNA_fungi_wLR3.fasta	--no-trim	--untrimmed-output	no_LR3.fasta	--minimum-

length	100	LSU_DNA_fungi.fasta	

#./cutadapt	-g	ACCCGCTGAACTTAAGC	-e	0.15	--overlap=12	-o	

LSU_DNA_fungi_wLR3LROR.fasta	--untrimmed-output	wLR3_noLROR.fasta	--

minimum-length	100	LSU_DNA_fungi_wLR3.fasta	



UPARSE	pipeline	

Quality	filter	and	truncation	

#	usearch8	-fastq_filter	trimmed_H242SR_LSU_R2.fastq	-fastq_trunclen	150	-

fastq_maxee	0.25	-fastaout	H242SR_LR3_L150E025.fasta	&>	

H242SR_LR3_L150E025_filter.log	

Add	barcode	to	reads	

#	sed	"-es/^>\(.*\)/>\1;barcodelabel=3B;/"	<	3B_ITS4_L150E025.fasta	>	3B_ITS4.fa	

Dereplicate	reads	and	add	size	(number	of	the	same	read)	to	the	reads	

#usearch8	-derep_fulllength	H3LSU_pine.fa		-fastaout	H3LSU_pine_derep.fas	–

sizeout	

usearch8	-sortbysize	H3LSU_pine_derep.fas	-minsize	2	-fastaout	

H3LSU_pine_derep_mc2.fasta	

Remove	singletons		

#usearch8	-sortbysize	H3LSU_pine_derep.fas	-minsize	2	-fastaout	

H3LSU_pine_derep_mc2.fasta	

OTU	clustering,	representative	sequences	selection	and	De	novo	chimera	

check	

#usearch8	-cluster_otus	LR3_L150E025.derep.mc2.fasta	-otus	

LR3_L150E025.derep.mc2.repset.fasta	&>	LR3_L150E025.derep.mc2.otu97.log	

Numbering	OTUs	

#python	fasta_number.py	H3LSU_pine_derep_mc2_represt.fas	OTU_	>	

H3LSU_pine_derep_mc2_represt_label.fasta	

mapping	original	reads	to	representative	sequences	of	OTUs	



#usearch8	-usearch_global	H3LSU_pine.fa	-db	

H3LSU_pine_derep_mc2_represt_label.fasta	-strand	plus	-id	0.97	-uc	

H3LSU_pine_derep_mc2_represt_label_map.uc	-threads	24	

QIIME	

Normalize	read	count	

#normalize_table.py	-i	LSU_L150E025.derep.mc2.repset_fungi_label_map_sort.biom	

-z	--DESeq_negatives_to_zero	-a	DESeq2	-o	

LSU_L150E025.derep.mc2.repset_fungi_label_map_sort_DESeq2_normalized_otu_tab

le.biom	

Calculate	beta	diversity	(Bray-Curtis	index)	

#beta_diversity.py	-i	allcount_forQiime.biom	-m	bray_curtis	-o	bray_curtis.txt	

Generating	taxa	summary	and	barplot	

#summarize_taxa_through_plots.py	-o	qiime_1	-i	allcount_forQiime_tax.biom	-m	

all_GB+customized_silva_wLRORLR3_1208/velvet60/map.tsv	

Adding	taxonomy	to	biom	data	

#biom	add-metadata	--sc-separated	taxonomy	--observation-header	

OTUID,taxonomy	--observation-metadata-fp	

H3LSU_pine_derep_mc2_represt_label_tax_assignments.txt	-i	

H3LSU_pine_derep_mc2_represt_label_map-table.biom	-o	

H3LSU_pine_derep_mc2_represt_label_map-table_rdp.biom	

NMDS	

#nmds.py	-i	bray_curtis_moss_culture_list_otutable_deseq2.txt	-d	2	-o	NMDS	

Turnover	and	nestedness	measurements	(in	R	package	“betapart”)	

#beta.multi(X,	index.family="sorensen")	



Methods	S6.	Primary	and	secondary	(MA,	MP)	reference	

database	constructions	

To	detect	fungal	activity,	ribosomal	RNA	abundances	were	examined	using	

databases	prepared	with	LR0R	(Vilgalys	unpublished	

[http://www.botany.duke.edu/fungi/mycolab])	and	LR3	(Vilgalys	and	Hester,	

1990)	primers.	The	LR0R	(forward	primer)	and	LR3	(reverse	primer)	are	commonly	

used	for	targeting	D1	and	D2	regions	of	the	nrLSU,	respectively	(Hinrikson	et	al.,	

2005).	The	LR0R/LR3	databases	were	constructed	through	several	steps	shown	in	

Supplementary	Fig	S2a,	S3a.	First,	ribosomal	RNA	data	were	combined	from	three	

sources:	1)	GenBank	(accessed	on	30	November	2015	

[http://www.ncbi.nlm.nih.gov/]);	2)	Silva	database	(accessed	on	14	October	2014	

[https://www.arb-silva.de/]);	and	3)	relevant	project	data	that	include	i)	an	

alignment	of	sequence	data	from	cultured	endophytes	generated	by	an	NSF	

Dimensions	of	Biodiversity	project	(http://www.endobiodiversity.org/)(Arnold	et	

al.,	2009;	U'Ren	et	al.,	2009;	U'Ren	et	al.,	2010;	U'Ren,	2011;	U'Ren	et	al.,	2012),	ii)	

sequences	of	endophytes	isolated	in	culture	in	our	study,	and	fruiting	bodies	

collected	in	this	study,	and	iii)	amplicon	sequences	generated	by	our	study.		To	

make	sure	data	from	public	databases	only	contain	sequences	of	interest,	sets	of	

primers	were	used	to	filter	unwanted	sequences	using	cutadapt	(Martin,	2011)	with	

error	allowance	of	10%.	For	sequences	from	GenBank,	only	sequences	containing	

both	primers	ITS4	(White	et	al.,	1990)	and	LR3	or	LR0R	and	LR15	(Vilgalys	

unpublished	[http://www.botany.duke.edu/fungi/mycolab])	were	kept	to	reduce	

the	chance	of	random	matching.	Two	reference	datasets	were	used	to	decrease	the	

possibility	of	deleting	correct	sequences	because	one	of	the	primers	was	trimmed	

out.	Only	one	primer	set	(LR0R+LR3)	was	used	to	check	sequences	of	the	Silva	

database	because	we	expected	this	database	to	contain	fewer	contaminations.	For	

the	LR0R	and	LR3	libraries,	the	LR0R	and	LR3	primers	were	trimmed,	respectively.	

After	the	primers	were	trimmed,	the	first	250	bp	were	kept	for	the	LR0R	dataset	

and	the	last	250	bp	were	kept	for	the	LR3	dataset.	This	step	ensured	that	sequences	

in	the	reference	libraries	had	similar	length,	and	the	length	of	250	bp	was	used	



because	the	RNA-seq	reads	were	125	bp	pair-ended.	Our	LR0R	database	included	

69,999	reference	sequences	(hereafter	referred	to	as	our	LR0R	primary	database)	

and	our	LR3	database	included	48,930	sequences	(hereafter	referred	to	as	our	LR3	

primary	database;	see	Supplementary	Fig	S2a,	S3a).		

After	quality	filtering,	the	remaining	reads	(368,703,726	reads)	of	the	

metatranscriptome	were	mapped	against	the	library	described	above.	All	reads	

mapped	to	the	primary	library	with	Bowtie2	(Langmead	and	Salzberg,	2012)	were	

pooled	and	used	to	create	the	secondary	reference	databases.	Two	methods	were	

applied	for	the	construction	of	the	secondary	reference	databases.	The	first	method	

used	Velvet	(Zerbino	and	Birney,	2008)	to	assemble	the	mapped	reads.	The	second	

method	used	USEARCH	(Edgar,	2013)	to	merge	paired-end	reads.	Hereafter,	

databases	created	through	the	Velvet	assemblage	process	will	be	referred	to	as	MA	

(Metatranscriptome	Assembled)	datasets,	and	those	created	through	USEARCH	

pair-merging	will	be	referred	to	as	MP	(Metatranscriptome	Pair-merged)	datasets.		

Alignments	of	the	representative	sequences	were	manually	checked	with	

Mesquite	(Maddison	and	Maddison,	2011)	to	confirm	that	they	represented	LR0R	or	

LR3	regions.	These	sequences	also	were	BLASTed	against	the	NCBI	database	to	

confirm	that	the	sequences	represented	fungi.	All	unreliable	sequences	or	regions	

were	removed.		

Methods	S7.	Comparison	between	metatranscriptome	and	amplicon	

sequencing	data	for	the	study	of	fungal	communities	associated	with	plants	

Amplicon	sequencing	had	deeper	and	more	even	sampling	depths	across	individual	

samples	according	to	rarefaction	curves	(Supplementary	Fig	S10).	

Metatranscriptomic	(shotgun	sequencing)	and	amplicon-based	approaches	each	

have	their	own	advantages	and	disadvantages	(Lindahl	et	al.,	2013).	

Metatranscriptomes	provide	researchers	flexibility	to	test	hypotheses	with	many	

molecular	markers.	Not	only	the	presence/absence	of	OTUs	is	detected,	but	rRNA	

read	abundances	can	be	used	as	proxies	for	levels	of	metabolic	activity	for	OTUs.	

Moreover,	after	identifying	fungi	of	interest	using	rRNA	and	their	levels	of	metabolic	

activity,	their	mRNA	can	be	studied	to	explore	their	function.	A	shotgun	based	



metatranscriptomic	approach	also	avoids	primer	and	PCR	biases	(Lindahl	et	al.,	

2013).	However,	detection	of	rRNA	through	mRNA-enriched	metatranscriptomics	is	

a	relatively	low	throughput	method	for	high	complexity	communities	as	their	

rarefaction	curves	showed	(Supplementary	Fig	S10).	Construction	of	

comprehensive	but	clean	reference	databases	requires	work	and	experience,	but	

nevertheless	can	lead	to	reference	dataset	biases.	Furthermore,	metatranscriptomic	

data	are	usually	obtained	exclusively	for	mRNA-based	studies,	thus	mRNA	

enrichment	steps	(e.g.,	polyA	enrichment	and	rRNA	depletion	methods)	usually	are	

applied	for	library	construction.	Yet	untested,	these	steps	might	introduce	biases	

and	are	selective	for	certain	taxa.	In	turn,	amplicon	sequencing	methods	are	cheaper	

and	have	a	higher	coverage	per	unit	sample,	but	primer	design	and	PCR	steps	can	

introduce	biases	(Lindahl	et	al.,	2013;	Nguyen	et	al.,	2015).		

The	metatranscriptome	pair-merging	(MP)	method	yielded	consistent	results	

for	primers	LR0R	and	LR3	(Figs	2-5),	whereas	the	metatranscriptome	assembled	

(MA)	approach	provided	results	that	differed	between	LR0R	and	LR3.	For	example,	

the	ratios	of	reads	mapped	(Supplementary	Fig	S2b,	S3b)	and	the	major	OTUs	

detected	(Fig	5)	by	MA	differed	between	LR0R	and	LR3,	suggesting	that	the	MA	

method	is	more	biased	given	the	selected	markers.	The	MP	method	is	also	less	likely	

to	create	chimeric	sequences	in	the	secondary	database,	because	two	pairs	should	

always	come	from	the	same	fragment	during	the	sequencing	process.	Currently,	the	

reference	sequences	generated	with	pair-merging	(MP)	strategies	are	shorter	

(median	length	of	LR0R-MA	=	176	bp	vs.	LR0R-MP	=	123	bp;	LR3-MA	=	195	bp	vs.	

LR3-MP	=	136	bp).	With	next-generation	sequencing	technology	improving	at	a	fast	

pace	we	expect	this	difference	in	length	to	become	irrelevant	in	the	near	future	

(Lindahl	et	al.,	2013).	In	terms	of	marker	choice	(LR0R	vs.	LR3),	we	note	that	some	

taxa	recovered	by	one	dataset	were	not	always	recovered	by	others;	thus,	having	

several	datasets	can	lower	the	chances	of	misinterpreting	the	data	due	to	reference	

data	bias	and/or	stochasticity.	Also,	different	markers	for	the	same	fungus	might	

assign	it	to	different	taxonomic	ranks,	which	is	very	helpful	when	establishing	the	

taxonomic	composition	of	fungal	communities.		



One	problem	we	encountered	was	the	difficulty	to	assign	informative	

taxonomy	to	each	OTU.	Because	sequences	were	relatively	short	(~120-200	bp),	

robust	assignments	often	were	not	possible	at	the	genus	level	(e.g.	~40%	OTUs	for	

LR0R_MP	dataset	were	only	assigned	to	hierarchies	higher	than	the	genus	level),	

making	biological	comparisons	difficult.	An	additional	concern	is	the	inadequate	

database	coverage	and	taxonomic	information	for	many	fungal	OTUs.	Even	in	the	

case	where	we	have	longer	sequences	available	for	culturable	fungi,	the	majority	of	

their	BLAST	top	hits	only	have	taxonomic	information	at	high	ranks	(e.g.,	class),	

impeding	further	taxonomic	comparisons.	We	used	Megablast	+	MEGAN	(Huson	et	

al.,	2007)	to	report	taxonomic	assignments,	coupled	with	the	RDP	classifier	utilizing	

the	SILVA	database	(Liu	et	al.,	2012)	(Supplementary	Tables	S7-S12).	Overall	the	

results	from	these	two	taxonomy-assignment	approaches	were	similar.	However,	

for	some	sample	sets,	one	package	would	provide	a	more	detailed	taxonomic	

assignment	than	the	other.	For	example,	some	taxa	assigned	to	Rickenella	by	RDP	

were	only	assigned	to	Agaricomycetes/Tricholomataceae	by	Megablast	+	MEGAN	

(Supplementary	Tables	S7-S8,	S10	and	S12).	The	OTUs	classified	as	Cortinarius	(Figs	

3	and	5)	by	MEGAN	may	be	Galerina,	because	1)	the	BLAST	top	hit	is	Galerina,	and	2)	

Galerina	fruiting	bodies	were	commonly	collected	at	the	same	field	site.	When	

considering	the	OTU	delimitation	threshold,	the	results	based	on	OTUs	using	a	95%	

similarity	threshold	(Supplementary	Fig	S9)	detected	similar	results	compared	to	

those	based	on	a	97%	similarity	threshold	(Figs	2-6).	While	the	ITS	(internal	

transcribed	spacer)	region	(Schoch	et	al.,	2012)	is	likely	to	provide	a	better	

taxonomic	assignment,	there	are	far	fewer	reads	from	the	ITS	region	in	

metatranscriptomic	datasets	than	from	the	LSU	region	(Liao	et	al.,	2014).	Because	

ITS	transcripts	are	believed	to	be	degraded	quickly	(Liang	and	Fournier,	1997),	the	

ITS	region	may	not	be	an	ideal	marker	for	studying	fungal	(ribosomal)	activity	when	

using	metatranscriptomic	data.		

Differentially	Expressed	Gene	detection	(Love	et	al.,	2014)	worked	well	to	

detect	differentially	active	taxa	for	our	dataset.	A	similar	approach	was	recently	

implemented	in	Qiime	(Caporaso	et	al.,	2010),	but	as	pointed	out	in	their	



documentation	(http://qiime.org/scripts/differential_abundance.html),	this	

application	has	not	been	tested	broadly	and	merits	caution.	

A	previous	metatranscriptomic	analysis	of	ectomycorrhizae	revealed	

dominance	by	only	a	few	fungi	and	suggested	that	fungal	communities	are	simpler	

than	those	suggested	by	rDNA	amplicon	sequencing	(Liao	et	al.,	2014).	Our	

metatranscriptomic	analyses	showed	that	the	active	fungal	communities	in	

association	with	D.	scoparium	are	complex,	that	metatranscriptomic	methods	are	

applicable	to	the	study	of	complex	communities	in	environmental	samples,	and	that	

the	main	taxa	detected	through	shotgun	sequencing	(with	fewer	PCR	amplifications)	

are	similar	to	those	revealed	by	cDNA	based	amplicon	sequencing.	A	purely	

metatranscriptomic	approach	detected	a	higher	proportion	of	active	fungi	

represented	by	certain	taxa	(e.g.,	Mortierellomycotina	in	Fig	4)	compared	to	the	

amplicon-based	method,	possibly	due	to	PCR	efficiency	and	primer	bias.	This	

suggests	that	the	contributions	of	some	taxa	might	be	underestimated	when	using	

only	an	amplicon-sequencing	method	(Tedersoo	et	al.,	2015),	a	question	worthy	of	

further	study.	Notably,	metatranscriptomic	data	generally	have	lower	sequencing	

depth	(Supplementary	Fig	S10).	Further	discussion	of	methodological	approaches	is	

provided	in	Supplementary	Method	S7	and	forming	the	basis	for	future	work. 
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Supporting	Information	Figures	S1-S10.	

Fig.	S1.	Quality	filtering	of	cDNA	amplicon	sequencing.	

Amplicon	sequencing	results	for	LR0R	(forward)	and	LR3	(reverse)	reads	and	read	

numbers	after	the	removal	of	adaptors	and	quality	filtering.	The	Y-axis	corresponds	

to	the	read	number.	The	X-axis	was	labeled	according	to	the	layers	of	D.	scoparium	

and	sampling	replicates	(Fig	1).	



Fig.	S2.	Workflow	for	metatranscriptome	LR0R	database.	

(a)	Workflow	for	LR0R	database	constructions.	The	primary	fungal	database	refers	

to	rRNA	reference	sequences	collected	from	NCBI	GenBank,	Silva	database	and	

project	related	resources.	Secondary	fungal	rRNA	reference	databases	were	created	

using	the	reads	mapped	to	the	primary	database	from	the	metatranscriptome.	(b)	

Histogram	showing	ratios	of	fungal	reads	mapped	to	the	three	LR0R	libraries.	The	

libraries	were	color-coded	according	to	Figure	S2a.	The	Y-axis	corresponds	to	the	

ratio	of	reads	mapped	to	the	three	LR0R	libraries.	The	X-axis	is	labeled	according	to	

the	layers	of	D.	scoparium	and	sampling	replicates	(Fig.	1).			





Fig.	S3.	Workflow	for	metatranscriptome	LR3	database.	

(a)	Workflow	for	LR3	database	constructions.	The	primary	fungal	database	refers	to	

rRNA	reference	sequences	collected	from	NCBI	GenBank,	Silva	database	and	project	

related	resources.	Secondary	fungal	rRNA	reference	databases	were	created	using	

the	reads	mapped	to	the	primary	database	from	metatranscriptome.	(b)	Histogram	

showing	ratios	of	fungal	reads	mapped	to	the	three	LR3	libraries.	The	libraries	were	

color	coded	according	to	Supplementary	Fig	S2a.	The	Y-axis	corresponds	to	the	ratio	

of	reads	mapped	to	the	three	LR3	libraries.	The	X-axis	is	labeled	according	to	the	

layers	of	D.	scoparium	and	sampling	replicates	(Fig	1).			





Fig.	S4.	Ratio	of	the	metatranscriptomic	data	mapping	to	the	reference	plant	

genome/transcriptome.		

Colors	correspond	to	the	sampled	layer	as	shown	in	Figure	1a.	The	letters	t,	m	and	b	

stand	for	top,	middle	and	bottom	layers.	Numbers	1,	2	and	3	reflect	replicates	

shown	in	Figure	1b.	The	ratios	of	reads	mapped	to	the	plant	D.	scoparium	always	

declined	toward	the	bottom	layer.	



Fig.	S5.	Isolation	frequency	of	fungal	and	bacterial	endophytes	in	culture.		

Colors	correspond	to	the	sample	layer	as	shown	in	Fig	1a.	The	letters	t,	m	and	b	

stand	for	top,	middle	and	bottom	layers.	Numbers	1,	2	and	3	reflect	microsites	

shown	in	Fig	1b.		Many	bacteria	were	isolated,	especially	in	the	bottom	layer	of	the	

gametophytes.	These	bacterial	communities	will	be	studied	in	a	separate	project.		



Fig.	S6.	Fungal	hyphae	in	photosynthetic	plant	tissues.	
The	moss	was	washed	vigorously	with	tap	water	to	remove	epiphytic	debris	prior	to	

microscopic	examinations.	(a)	Photosynthetic	tissue	of	D.	scoparium	under	

dissecting	microscope	before	KOH	and	staining	procedure.	(b)	Photosynthetic	tissue	

of	D.	scoparium	under	dissecting	microscope	after	being	cleared	with	3%	KOH	

overnight	and	stained	with	Trypan	blue.		



Fig.	S7.	Fruit-bodies	collected	at	the	sampling	site.	

Fruit-bodies	collected	at	sampling	site	(Fig	1b)	that	were	attached	to	gametophytes	

of	Dicranum	scoparium.	



Fig.	S8.	Results	from	the	LR3-MA	dataset	when	using	an	OTU	delimitation	of	

95%	similarity	(MA	=	Metatranscriptome	Assembled).		



Fig.	S9.	Ratio	of	reads	mapped	to	Ascomycota,	Basidiomycota,	and	non-Dikarya	

phyla	based	on	the	LR0R-MP	dataset	(MP=	Metatranscriptome	Pair-merged).		



Fig.	S10.	Rarefaction	curves	of	all	datasets.	(MA	=	Metatranscriptome	

Assembled,	MP=	Metatranscriptome	Pair-merged,	amp	=	amplicon	sequencing)	




