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1 Modularity analysis

Many different approaches exist to measure and optimize modularity [1–3].
Here, we used the algorithm developed by Dormann & Straus [2] for quanti-
tative networks, as this method has been shown, using benchmark tests, to
be highly sensitive and accurate. This algorithm uses a dendrogram-based ap-
proach to split the network into modules (which has the advantage over several
other methods to detect modules nested into larger modules), and optimizes the
modularity level following a simulated annealing procedure.

1.1 Simulated annealing

Simulated annealing is a widely used optimization technique that is based on
a Markov Chain Monte Carlo (MCMC) procedure. Briefly, it starts with a
random state (here, distribution of species into different modules), swaps to an
alternative state (the swap is selected randomly among all possible swaps), and
the modification is accepted or not based on a given probability. This proba-
bility will be proportional to the cost it entails to the optimization procedure.
Here, since we want to increase the modularity level of our network module
configuration, a swap that decreases modularity would get a low probability of
acceptance. However, the important property of simulated annealing is that the
algorithm is less constrained in the earlier stages of the optimization process:
this is allowed by progressively decreasing a parameter routinely called ”tem-
perature” during the algorithm. In the earlier stages, temperature is high, and
virtually any swap will be accepted. This will allow the algorithm to broadly
explore all potential states of the system (here, allocation of all species in the
network to various modules). Progressively, the temperature will go down, and
the algorithm will start accepting swaps that decrease modularity with a very
low probability, up to a point where it will only accept swaps that increase
modularity.

This method is very computationally intensive, but the advantage of Dor-
mann and Strauss’s algorithm [2] is that it is coded in C++, which allows hun-
dreds of thousands of swaps to be done within a few seconds. This is in sharp
contrast with other approaches coded in R, which can take several minutes for
a single network [4].

2 Beta-diversity decomposition and nestedness
analyses

2.1 Beta-diversity decompositions

Beta-diversity decompositions have been introduced in the ecological literature
to tease apart distinct sources of variation among sites in a meta-community
(e.g., [5]). The same reasoning can be applied to interaction networks, where
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two given species within a guild can be different because (1) they have a differ-
ent number of interactions or (2) they may have partners of different identity.
Podani et al. [6] have developed a mathematical framework to distinguish these
two sources of variation, and to display it in a 2D system, the ternary triangular
plot. In this framework, for each pair of species that we compare within a guild,
we calculate three distinct quantities that will sum to 1 (thus allowing to plot
them in a ternary triangle): S is the Ruzicka similarity between two species, D
is the relativized abundance difference measure (i.e., how species vary in their
number of interactions) and R is the relativized abundance replacement mea-
sure (i.e., how species distribute their interactions with different partners). For
comparing species j and k, interacting with a range of n potential partners,
these quantities are calculated as follows:

SRuz(j,k) =

∑n
i=1 min(xij , xik)∑n
i=1 max(xij , xik)

(1)

Drel(j,k) =
|
∑n

i=1 xij −
∑n

i=1 xik|∑n
i=1 max(xij , xik)

(2)

Rrel(j,k) =

∑n
i=1 |xij − xik| − |

∑n
i=1 xij −

∑n
i=1 xik|∑n

i=1 max(xij , xik)
(3)

where xij represents the number of interactions between species j and part-
ner i (and likewise for xik). Podani et al. [6] present in their original paper
idealized matrix scenarios to help visualize where they would fall on the ternary
triangle.

2.2 Nestedness

The Drel component of SDR analyses is closely related to the concept of nest-
edness in meta-communities or interaction networks. Thus, as a way to validate
our SDR analyses, we quantified the quantitative (i.e., abundance-based) nest-
edness of our interaction network based on the wNODF index developed by
Almeida-Neto & Ulrich [7]. This index also compares pairs of species one at a
time, but here the matrix (i.e., network) is ordered prior to the comparisons,
and the comparisons only goes from one side to the other in the matrix. For
example, the most typical way of ordering the matrix, when no a priori gradient
is available, is to sort rows or columns by their total number of non-zero cells
(i.e., number of different partners in an interaction network). Then, we look
whether the partner distribution of a species with less non-zero cells is nested
within that of a species with more non-zero cells. So, in a lichen network, for
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example, for a pair of mycobiont species i and j, with species i having more
partners (more non-zero cells in the matrix) than species j

wNODF(i,j) = kij/Nj (4)

where kij is the number of photobionts with whom species i interacts more
frequently than species j, and Nj is the total number of photobiont partners for
species j. It is then possible to compute the overall nestedness for mycobionts
as

wNODFmyc =

n−1∑
i=1

n∑
i=j+1

kij
Nj

(5)

where n represents the total number of mycobiont species in the network. Of
course, the same reasoning can be applied to evaluate whether different photo-
bionts have a nested distribution of mycobiont partners.

3 Null model

To evaluate the statistical significance of our modularity and nestedness indices,
we needed to compare our observed values to random expectations. Since no
a priori distribution can be expected to reflect the probability distribution of
our measured network indices under a random scenario, we needed to generate
one using randomizations of our initial data with a given null model. Here, the
choice of the null model was crucial: an overly liberal null model would tend to
produce matrices drastically different from the original data, such that the null
hypothesis (i.e., absence of a significant network-level pattern) would always be
rejected (type I error). On the other hand, an overly conservative null model
would be very inefficient at exploring the null space, and thus would tend to
produce matrices very similar to the original one, such that the null hypothe-
sis could never be rejected (type II error). Here, we chose a null model that
was fairly conservative, in that it preserved from the initial matrix/network the
connectance (i.e., total number of non-zero cells) and also, as much as possible,
the columns and rows marginal totals (i.e., the species’ total number of inter-
actions). This makes biological sense, since our null model thus preserves the
existence of more or less generalist taxa in our dataset, and also preserves the
total number of interactions recorded, which is likely to be influenced by our
sampling effort (and thus needs to be controlled for in the randomizations). By
using a conservative null model, we are thus less prone to reject the null hypoth-
esis while it is true (i.e., falsely detecting significant patterns in our network) [8].

To generate our null matrices, we used the vaznull function implemented
in the R package bipartite [9]. This function uses a probabilistic approach to
fill the cell of the null matrices, with a celll having a higher probability of
receiving an interaction if the product of the marginal totals of its corresponding
row and column in the original dataset was high. In this view, the function
fails at perfectly preserving rows and columns marginal totals, but in our case,
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this approach was still better than a swap-based approach. Indeed, while the
latter strictly preserves rows and columns marginal totals (thus being even more
conservative), it often fails to converge to a solution in a reasonable time frame,
as it was the case with our dataset. Moreover, since our network connectance
was very low, an overly conservative null model such as the swap-based approach
would have even more drastically increased type II error rates [10].

4 Interaction symmetry

Interaction symmetry was evaluated following Vázquez et al. [11]. This approach
allows evaluating the reciprocity of a species’ dependence on its partners. We
first define the effect of a species i on its partner j (sij), as the proportion of all
interactions of species j that are realized with species i. Then, for this species
pair, we can calculate the difference (d) in the effect of species i on species j and
vice versa: dij = sij − sji. Thus, for a given mycobiont i, we can calculate its d
coefficients for all its photobiont partners, and express its asymmetry coefficient
(Ai) as the mean of these. Ai is close to 1 if species i exerts strong effects on
its partners while experiencing little reciprocal effects from them, and close to
=1 in the reverse situation.

5 Rarefaction curves

Rarefaction curves were generated to ensure that our sampling effort was suf-
ficient to uncover relevant network patterns. To do so, we used a bootstrap
approach to re-sample our dataset (250 thalli) with given sampling efforts. For
each re-sampling, we re-assembled the interaction matrix and evaluated the fol-
lowing network parameters: connectance (i.e., proportion of non-empty cells in
a matrix), modularity and nestedness (wNODF ). For modularity and nested-
ness, we evaluated their their standardised scores, that is, not their crude value
but rather how they compare to random expectations, just like we did for the
analysis of the whole dataset. So for each re-sampling, we calculated its observed
modularity or nestedness, and generated 1000 random matrices using the same
null model as for the whole network analysis. We then calculated modularity and
nestedness z − scores using the following formula z = obs−meannull/SDnull

where z is the z-score, obs is the observed score (i.e., modularity or nested-
ness) and meannull and SDnull are mean and standard deviation of the scores
calculated for the random matrices.

4



Figure 1: Rarefaction curves

For each curve, black lines indicate the mean z−score for a given re-sampling
intensity, and the grey lines indicate the 95% confidence interval. As we can
see in Figure 1, all 3 parameters (connectance, modularity and nestedness)
covary with sampling effort. However, it is clear from the plots that additional
sampling would only have strenghtened the trends that we found. Modularity
starts getting significant with 220 thalli, and anti-nestedness was significant
with as little as 100 thalli (significance being evaluated with a one-tailed Z-
test). Thus, our sampling effort seems to be sufficient to address our questions.
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