Standard Paper

Sinuicella denisonii, a new genus and species in the Peltigeraceae from western North America

Daphne F. Stone1, Bruce McCune1, Carlos J. Pardo-De la Hoz2, Nicolas Magain3 and Jolanta Miadlikowska2

1Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; 2Department of Biology, Duke University, Box 30338, Durham, NC 27708, USA and 3Evolution and Conservation Biology, InBioS Research Center, University of Liége, Sart Tilman B22, Quartier vallée 1, Chemin de la vallée 4, B-4000 Liége, Belgium

Abstract

The new genus Sinuicella, an early successional lichen, was found on bare soil in Oregon, USA. The thallus is minute fruticose, grey to nearly black, branching isometric dichotomous, branches round, 20–90 μm wide in water mount. The cortex is composed of interlocking cells shaped like jigsaw puzzle pieces. Spores are hyaline, 1-septate, 25–40(–50) × 6.5–9(–11) μm. Maximum likelihood phylogenetic analyses on multilocus data sets, first spanning the entire order Peltigerales and then restricted to Peltigeraceae with extended sampling from Solorina and Peltigera, revealed the placement of Sinuicella outside of currently recognized genera, sister to Peltigera, with high support. Based on the phylogenetic, morphological and ecological distinctness of Sinuicella, we formally introduce a new genus represented by the single species S. denisonii. The cyanobiont of S. denisonii is Nostoc from phylogroup XL, Clade 2, Subclade 3 based on the rbcL-X marker.

Key words: lichenized ascomycetes, lichenized fungi, Nostoc, Oregon, Peltigera, Peltigeraceae, Solorina, USA

(Accepted 28 October 2020)

Introduction

Sifting through unidentified and partly identified specimens in the Oregon State University herbarium, we found a minutely fruticose cyanolichen on soil that we had not seen before. Under the microscope it was revealed to be a Nostoc-containing cyanolichen with cortical cells shaped like jigsaw puzzle pieces, immediately suggesting Leptogium contortum (Henssen) T. Sprib. & Muggia (photograph p. 288, McCune & Geiser 2009). While that species occurs in Oregon on trees, we knew of no occurrences on soil. Furthermore, the photobiont was not Rhizonema (Lücking et al. 2009; Cornejo et al. 2016), as is found in L. contortum and L. dendricum (Nyl.) Nyl., but a species of Nostoc. Based on the unusual combination of characters and the nearby location, we decided to try to find fresh material for further study.

The presumed collector of the original specimen was William C. Denison, long-time mycologist at Oregon State University, now deceased. Because the collecting location was quite vague, we asked his son, Tom Denison, if he knew anything of his father’s explorations in that area. Tom did remember that their family took long hikes following the railroad grade up the Luckiamute River from Hoskins to the town of Valsetz. Valsetz no longer exists, and all that remains of the railroad are sections of the railroad bed where it has not been destroyed by road construction. Currently, the river is paralleled by a major logging road, with a slender riparian zone surrounded by young forests and clear cuts. Because the area is so heavily impacted by logging and road dust, we had only a slight hope of finding fresh material. However, we were pleasantly surprised to find not only a modern location for the unknown lichen, but also Gregorella humida (Kullh.) Lumbsch as an ecological associate of the new lichen (McCune & Stone 2020).

Our first attempts at sequencing the ITS region of the new lichen gave surprising results: it blasted closest to Peltigera venosa (L.) Hofm., but examination of an alignment with various Peltigera species revealed such large differences within the ITS region that we suspected a sequencing problem. Repeating the extraction and sequence yielded nearly identical results, prompting us to pursue the problem in earnest. The purpose of this paper is to present these results as a new monospecific genus Sinuicella (S. denisonii) in the Peltigeraceae, with affinities to Solorina and Peltigera but clearly falling outside of both.

Materials and Methods

We studied the original specimens collected in 1969 and the new collections from near Hoskins, Oregon with standard light microscopy. Thin sections and whole thalli were studied in material mounted in water, K/IKI, and IKI. Spores were measured at ×400. Microscopic photographs were taken with a Nikon Coolpix 995 digital camera through an Olympus BX41 microscope, coupled with an Optem 25-70-14-03s to the UVT-1X C-mount on the trinocular head, using magnifications up to

Cite this article: Stone DF, McCune B, Pardo-De la Hoz CJ, Magain N and Miadlikowska J (2021) Sinuicella (S. denisonii) in the Peltigeraceae, with affinities to Solorina and Peltigera but clearly falling outside of both. The Lichenologist 53, 185–192. https://doi.org/10.1017/S0024282920000584

© The Author(s), 2021. Published by Cambridge University Press on behalf of the British Lichen Society
the mtSSU region was amplified with primers mrSSU1 and mrSSU2 (Vilgalys & Hester 1990), with PCR annealing at 64 °C for 45 s; particularly if sterile, would have been filed under a new site, we have been unable to locate material elsewhere, either in regional herbaria and have not seen any soil-dwelling material labelled under that name.

Thin-layer chromatography (TLC) was performed on the specimen D. Stone 10122 (OSC) using solvents A, B, and C (Calberson & Ammann 1979; Calberson & Johnson 1982; solvent C is the same as solvent ‘TA’ of Holtan-Hartwig (1993)). Four Pettigera species (P. britannica (Gyelnik) Holt.-Hartw., P. horizontalis (Hudson) Baumg., P. malacea (Ch.) Funck and P. retifoveata Vittik.) and three Sinorina specimens (S. crocea (L.) Ach., S. octospora (Arnold) Arnold and S. saccata (L.) Ach.) were included as the reference samples for comparison. We extracted DNA from a single specimen (Stone 10024) without grinding the thallus using the REDExtract-N-Amp Plant PCR kit by Sigma-Aldrich (St Louis, Missouri, USA). Details of PCR for ITS and LSU follow McCune et al. (2019).

Briefly, we amplified the fungal ITS region with primers ITS1F and ITS4, and the nuLSU region with primers AL2R and LR6 (Vigalys & Hester 1990), with PCR annealing at 64 °C for 45 s; the mtSSU region was amplified with primers mtSSU1 and mtSSU3R, with PCR annealing at 53 °C for 1 min. We also amplified one region of the cyanobiont, rbcLX, with primers CX and CW (primers and PCR conditions follow O’Brien et al. (2005)). PCR products were visualised with gel electrophoresis and successful samples were cleaned using ExoSAP-ITTM Affymetrix 78200, and subsequently sequenced with forward and reverse reads (Eurofins MWG Operon Inc., Kentucky, USA). At least two reads per region were combined into a consensus sequence.

Data matrices and phylogenetic analyses

We applied the Evolutionary Placement Algorithm (EPA; Berger & Stamatakis 2011) as implemented in the Tree-Based Alignment Selector kit (T-BAS version 2.1, available at http://tbas.hpc.ncsu.edu; Carbone et al. 2017, 2019) using the Lecanoromycetes reference tree (Miadlikowska et al. 2014a; Carbone et al. 2019) based on mtSSU and nuLSU sequences separately and combined. For each EPA analysis we used the GTR substitution model (Rodríguez et al. 1990) with gamma distribution parameter (GTRGAMMA) and calculated likelihood weights with a placement cut-off distance of 10. Based on the EPA analyses, *Sinuicella denisonii* was consistently shown as sister to the clade representing the genus Pettigera (results not shown). This sister relationship was also confirmed by a follow up search of the best tree and bootstrap analyses (1000 replicates) (RAxML 8.2.12; Stamatakis 2006; Stamatakis et al. 2008) as implemented in T-BAS v.2.1 via the CIPRES Science Gateway v.3.3 (Miller et al. 2010, 2015) based on the multilocus matrix for Lecanoromycetes. The newly added mtSSU and nuLSU sequences were realigned with MAFFT v.7.402 (Katoh & Toh 2010), the GTRGAMMA nucleotide substitution model was calculated, and the backbone constraint on the multifurcating Lecanoromycetes reference tree (where internodes with bootstrap support < 70% were collapsed) was implemented.

Based on the resulting RAxML phylogeny showing a sister relationship between *Sinuicella* and *Pettigera* (with 99% bootstrap support), we selected representatives from each family in the order Pettigerales together with two members (Lecidea and Porpidia) from the closely related order Lecideales (Miadlikowska et al. 2014a) to root the tree. Single-locus alignments for three ribosomal RNA loci, nuSSU, nuLSU and mtSSU, and the protein coding *rpb1* gene were downloaded from T-BAS v.2.1 (files associated with the Lecanoromycetes reference tree; Carbone et al. 2017, 2019). We supplemented these data with six additional taxa from the Pettigerales (Stribille et al. 2014), which were not present in the Lecanoromycetes reference tree in T-BAS, giving a total of 47 species (see Supplementary Material Table S1, available online).

All single-locus alignments were manually adjusted using Mesquite v.3.11 (Maddison & Maddison 2015) with the option ‘Nucleotide with AA color’ for guiding the *rpb1* alignment. Ambiguously aligned regions (sensu Lutzoni et al. 2000) were delimited manually and excluded from subsequent analyses. The combined 4-locus, 47 species data set for the Pettigerales includes a single representative from most genera in all 10 families currently recognized in the order (Coccocarpiaceae, Colllemataceae, Koerberiaeae, Lobariaeae, Massalongiaeae, Nephromataceae, Pannariaceae, Peltigeraeae, Placynthiaceae and Vahliiellaceae; Lücking et al. 2016). Six of the 47 species had two loci, 18 species had three loci, and 23 species had four loci (Supplementary Material Table S1).

To re-evaluate the phylogenetic placement of *Sinuicella* within Pettigeraeae and confirm its sister relationship to *Pettigera*, we used a 4-locus data set that includes ITS, nuLSU, β-tubulin and *rpb1*, derived from a 7-locus data matrix (Chagnon et al. 2019) containing a single representative of every putative Pettigera species and selected species of the genus Sinorina. To this data matrix we added the newly obtained ITS and nuLSU sequences for *Sinuicella denisonii* (Stone 10024), individuals of Sinorina species for which at least one of the four loci was available in GenBank, and newly-generated sequences for two additional Sinorina specimens. We expanded the outgroup by adding three members of the family Lobariaeae. All single-locus alignments were manually adjusted using Mesquite v.3.11 with the option ‘Nucleotide with AA color’ for guiding the protein-coding alignments. Ambiguously aligned regions (sensu Lutzoni et al. 2000) were delimited manually and excluded from subsequent analyses. The final 4-locus data set for the Pettigeraeae includes 185 taxa, 13 of which are represented by a single locus, 45 by two loci, 45 by three loci, and 82 taxa by four loci (see Supplementary Material Table S2, available online).

To determine the phylogenetic identity of the *Nostoc* cyanobiont from *Sinuicella denisonii* (Stone 10024), we added its *rbcLX* sequence to a matrix containing 503 *rbcLX* haplotypes derived from Pardo-De la Hoz et al. (2018) and Magain et al. (2018). These sequences represent a broad sampling of published symbiotic and free-living *Nostoc* from all currently recognized phylodgroups within *Nostoc* Clade 1 and Clade 2, Subclades 1, 2 and 3 (sensu Otálora et al. 2010; Magain et al. 2017a, b, 2018).

Maximum likelihood analyses using RAxML-HPC2 on XSEDE were performed at the nucleotide level on each data set (4 loci for Pettigerales, 4 loci for Pettigeraeae, and *rbcLX* for the...
Nostoc) as implemented on the CIPRES Science Gateway. Optimal
tree and bootstrap searches were conducted with the rapid hill-
climbing algorithm for 1000 replicates with the GTR+GAMMA
nucleotide substitution model. Each data set was partitioned
into subsets using PartitionFinder2 on XSEDE (Lanfear et al.
2017) as implemented on the CIPRES portal, with greedy search
and using the AIACC (corrected Akaike Information Criterion) for
model selection. The 4-locus data set for \textit{Peltigerales}
was partitioned into five subsets: mtSSU, nuSSU, nuLSU, RPBI-1st
+ 2nd codon positions, and RPBI-3rd codon position + intron.
The 4-locus data set for \textit{Peltigeraeae} was partitioned into two
subsets: nuLSU + RPBI-1st-1st + 2nd + intron + ß-tubulin-1st + 2nd
+ 3rd codon positions + ITS, and ß-tubulin introns + RPBI-3rd
codon position. The \textit{rbcLX} data set was partitioned into six sub-
\textit{rbcX}-3rd codon positions. Relationships receiving bootstrap sup-
port \(\geq 70\% \) were considered well supported.

Results

BLAST results (as of 3 May 2020) for \textit{Sinuicella} sequences were
inconclusive: the nuLSU and mtSSU sequences showed a low similari-
ty (c. 94\%, 100\% coverage) to multiple species of \textit{Peltigera}
from various sections, while the ITS was most similar (91\%, 100\% cover-
age) to \textit{Solorina} \textit{saccata}. All EPA analyses using the
Lecanoromycetes reference tree in T-BAS placed \textit{Sinuicella} outside
of currently delimited genera, sister to \textit{Peltigera} (results not shown).
This phylogenetic affiliation was confirmed by maximum likelihood
inferences, first within the broader phylogenetic context of the
order \textit{Peltigerales} (Fig. 1A; Supplementary Material Table S1, avail-
able online) and then within the narrower context of the family
\textit{Peltigeraeae} (Fig. 1B; Supplementary Material Fig. S1, Supplementary
Material Table S2, available online). This sister relationship
of the genera \textit{Sinuicella} and \textit{Peltigera} was highly supported
in both phylogenies (100\%; Fig. 1A & B).

The cyanobiont from \textit{Sinuicella denisonii} represents \textit{Nostoc}
phylogroup XL (Fig. 1C) within \textit{Nostoc} Clade 2, Subclade 3
(Magain et al. 2018). This highly supported phylogroup (79\%)
includes \textit{Nostoc} associated with various \textit{Peltigera} species from section
\textit{Peltigera} collected in Central and South America, and a sym-
biont of \textit{Anthoceros} sp. (hornwort) from Germany (Fig. 1C;
Supplementary Material Fig. S2, available online). The cyanobiont
of \textit{Sinuicella denisonii} is the only member of phylogroup XL
known from North America. All \textit{rbcLX} sequences in this phy-
logroup share an identical nucleotide sequence for the spacer
region separating \textit{rbcL} from \textit{rbcX}. This spacer of the \textit{rbcLX}
locus cannot be aligned across all taxa included in this study
and, therefore, was excluded from phylogenetic analyses.

The New Genus and Species

\textbf{Sinuicella D. F. Stone, McCune & Miadl. gen. nov.}

MycoBank No.: MB 836896

Thallus minutely fruticose, isotomically dichotomously branched,
branches roundish in section; cortex with cells shaped like inter-
locking jigsaw puzzle pieces; medulla of isodiametric cells.
Apothecia initially globose, expanding with age to a flattened
disc, proper exciple minutely tomentose; spores hyaline, 1-septate,
broadly fusiform with blunt ends. Photobiont \textit{Nostoc} sp.

Monospecific; refer to species description for details.

\textbf{Sinuicella denisonii D. F. Stone, McCune & Miadl. sp. nov.}

MycoBank No.: MB 836898

Diagnosis as in the genus.

Type: USA, Oregon, Polk County, Wildwood Road, Hoskins to
Valsetz, former railroad grade, near bridge, 44.75556°N,
123.5543°W, 172 m, on soil, 13 November 2018, D. Stone 10024
(holotype—OSC; isotypes—DUKE, WTU, UPS).

(Figs 2–4)

Thallus minutely fruticose, indeterminate, spreading across bare
soil, grey to nearly black (Fig. 2A); branching mostly isotomic,
braches round to slightly flattened, 20–90 \(\mu \)m wide in water
mount; \textit{prothallus} not apparent; thallus cortex one cell deep,
these cells vertically elongate and 15–30 \(\mu \)m high, on the outside
surface appearing as interlocking puzzle pieces (Fig. 3B);
\textit{medulla} of densely packed cyanobacteria cells among isodiametric,
angled hyphal cells up to 25 \(\mu \)m wide; \textit{vegetative propagules} absent;
\textit{photobiont} \textit{Nostoc} (Fig. 3C), phylogroup XL of Magain et al.
(2018; GB \textit{rbcLX}: MT944984).

Apothecia initiating as a spherical knob with little fruiting sur-
face showing and proper exciple whitish and distinctly tomentose;
disc expanding with age to 1.5 mm wide, circular when first
expanded and becoming irregular in outline, the proper exciple
torn and ragged, fruiting surface reddish brown and flat to slightly
convex; base narrow at attachment to thallus; apothecial section
\textit{POL} = K\{ except K\}+ pale yellowish brown in exciple and
hypothecium; proper exciple well developed, radiate (Fig. 4A & D)
cells with luminarly elliptic near the upper edge to
broadly elliptic to nearly isodiametric and up to 25 \(\mu \)m wide
towards the base, cell walls 2.5 \(\mu \)m thick; \textit{hypothecium} c. 90 \(\mu \)m
tall overall, two layered, hyaline to pale brownish, the upper

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Phylogenetic placement of \textit{Sinuicella denisonii} in the order \textit{Peltigerales} (A) and the family \textit{Peltigeraeae} (B), and its cyanobiont within \textit{Nostoc} phylogroup XL of \textit{Nostoc} Clade 2, Subclade 3 (Magain et al. 2018). This highly supported phylogroup (79\%) includes \textit{Nostoc} associated with various \textit{Peltigera} species from section \textit{Peltigera} collected in Central and South America, and a symbiont of \textit{Anthoceros} sp. (hornwort) from Germany (Fig. 1C; Supplementary Material Fig. S2, available online). The cyanobiont of \textit{Sinuicella denisonii} is the only member of phylogroup XL known from North America. All \textit{rbcLX} sequences in this phylogroup share an identical nucleotide sequence for the spacer region separating \textit{rbcL} from \textit{rbcX}. This spacer of the \textit{rbcLX} locus cannot be aligned across all taxa included in this study and, therefore, was excluded from phylogenetic analyses.}
\end{figure}
thin layer 25–55 μm thick, of randomly oriented hyphae, lower layer 35–40 μm thick, prosoplectenchymatous, of small pale brownish cells, ±gelatinized, the hyphal structure obscure; hymenium 150 μm tall; ephymenium c. 10 μm tall, pale reddish brown or orangish brown; paraphyses simple, cylindrical, 2 μm diam., some to 3 μm at the tips, others not enlarged, without defined coloration at tips but pale reddish brown similar to the ephymenium; asci cylindrical, K/IKI+ blue, with a K/IKI+ darker blue annulus (Peltigera type; Fig. 4B); ascospores at least 4 per ascus (up to 6 observed), hyaline, 1-septate, broadly fusiform with blunt ends, 25.3–45.0 × 6.6–11.0 μm (Fig. 4C; n = 29, mean length 35.0 ± 4.6 μm, mean width 8.6 ± 1.2 μm).

Pycnidia not seen.

Chemistry. No secondary metabolites were detected with TLC.

Etymology. The genus name ‘Sinuicella’ refers to the cells of the cortex which have curved protrusions in their outlines, similar to interlocking jigsaw puzzle pieces. The epithet ‘denisonii’ refers to William C. Denison, long-time mycologist at Oregon State University, now deceased. He was a pioneer in the use of lichens to monitor air quality in the United States.

Ecology and substratum. Sinuicella denisonii is so far known from soil in recently disturbed areas along Wildwood Road which follows the Luckiamute River between Fort Hoskins and the former town of Valsset in the Coast Range of western Oregon. The known elevation range is so far narrow, at c. 172 m. It occurs in exposed to somewhat sheltered sites with high diversity and cover of early-successional bryophytes and lichens, but still with patches of bare, compacted, iron-rich reddish mineral soil of the Jory Series. The climate of this area is oceanic. The area receives an average of c. 198 cm of precipitation annually, with mean January and July temperatures of 4.9 °C and 18.2 °C, respectively (interpolation by ClimateWNA.com; 1981–2010).

Additional specimens examined. USA: Oregon: Polk County, collector unknown and presumed to be William Denison, 23 iii 1969, s. n. (OSC 35280); Polk County, Wildwood Road, Hoskins to Valsset, former railroad grade, near bridge, 44.75556°N, 123.5543°W, 172 m, on soil, with Gregorella humida, 2019, McCune 38618 (OSC), D. Stone 10122 (OSC).

Discussion

Phylogenetic analysis of species across the Peltigerales (Fig. 1A) recovered two suborders (Miadlikowska & Lutzoni 2004): highly supported (96%) Peltigerae (encompassing the families Lobariaceae, Massalongiaceae, Nephromataceae, Peltigerae and Vahliellaceae) and weakly supported (below 50%) Collemataceae (encompassing the families Coccocarpiaceae, Collemataceae, Pannariaceae and Placynthiaceae). The delimitation of these suborders is consistent with published phylogenies (e.g. Miadlikowska & Lutzoni 2004; Miadlikowska et al. 2006, 2014a; Muggia et al. 2011; Spribille et al. 2014). The phylogenetic placement of Koerberioidea, currently classified in Peltigerae (Spribille & Muggia 2012; Lücking et al. 2016) was not recovered (poor support in Fig. 1A) and the affiliation of Erinacellia, currently incertae sedis in Peltigerales (Spribille et al. 2014; Lücking et al. 2016), remains unsettled (Fig. 1A). Despite differences in taxon sampling, loci sequenced and analyses performed, the existing phylogenies for Peltigerales are highly congruent. Most dissimilarities in the phylogenetic relationships are due to the lack of phylogenetic signal in some data sets.

The phylogeny restricted to the family Peltigeraeae, which includes all putative species of Peltigera and all available representatives of Solorina (Fig. 1B; Supplementary Material Fig. S1, available online), is in overall agreement with Chagnon et al. (2019). We recovered the relationships among major clades in Peltigera, including the monophyly of the sections (Phlebia, Peltidea and Chloropeltigera) encompassing the tri-membered taxa (Miadlikowska et al. 2014b; Chagnon et al. 2019). The only exception was the nested placement of section Retifoveatae within section Peltigera recovered here, instead of the usual sister relationship between these two (Miadlikowska et al. 2014b; Chagnon et al. 2019); however, this nested relationship is not well supported.

The genus Solorina is not monophyletic, but its paraphyly caused by the separate lineage leading to S. crocea (see Miadlikowska & Lutzoni 2004) was weakly supported (below 50%). Although our phylogeny has the most extensive sampling of Solorina compared to published phylogenies, the majority is represented by less than four loci in the data matrix. Moreover, large portions of the sequences of the two spacers (ITS1 and ITS2) of the ITS locus were hardly alignable across the three genera (Peltigera, Sinuicella and Solorina) of the family Peltigeraeae and, therefore, were excluded from phylogenetic analyses.
Monophyly of Solorina and the current delimitation of morphospecies within the genus (e.g. S. bispora is not monophyletic in our tree; Fig. 1B) should be re-evaluated based on revised taxon sampling and more extensive sequence data.

The highly supported phylogenetic placement of Sinuicella within Peltigaceae (i.e. with Solorina and Peltigera) (Fig. 1A & B), is corroborated by the pronounced hemiangiocarpous development of the apothecia, which is characteristic of Peltigera and Solorina (Henssen 1981), and the presence of the Peltigera-type ascus apex (Honegger 1978; Bellemère & Letrouit-Galinou 1981) with its distinctive strongly amyloid ring (in Solorina the amyloid regions are more elongated).

Ascospore morphology also supports the placement of Sinuicella with Solorina and Peltigera. The ascospores of Sinuicella are intermediate between those genera, having the large size, broadly fusiform shape and single septum of most Solorina spores, but hyaline as in Peltigera, lacking the dark brown pigmentation of Solorina spores (Fig. 4C). Note that the asci of all three genera are of the Peltigera type with a distinctly dark blue-staining annulus in K/IKI (Fig. 4B).

A character that is atypical of most Peltigera and Solorina species is the cortex made of a single layer of cells. However, the cortex of aquatic lichen Peltigera hydrothyria Miadl. & Lutzoni does have only a single layer of cells, although these cells are not shaped like interlocking puzzle pieces. The shape of these cells is another unusual character of Sinuicella (Fig. 3B). Cells similar to these are seen in several other phylogenetically unrelated genera in the Pacific Northwest and are cases of convergent evolution (Muggia et al. 2011). Nodobryoria species (Parmeliaceae, Lecanorales) have cells that are similarly shaped but have protruding lumps on the surface formed by short, anastomosed hyphae (Common & Brodo 1995). Leptogidium thalli (Pannariaceae, Peltigerales) are more similar to Sinuicella in outward appearance, with a dichotomously branching thallus and interlocking cells forming the nearly smooth cortex (Muggia et al. 2011). The convergent evolution of a polychidioid thallus in the two suborders of Peltigerales, Polycephalium (Massalongiaceae, Peltigerales) and Leptogidium (Pannariaceae, Collemataceae), has already been demonstrated (Muggia et al. 2011). Here we demonstrate convergent evolution of both the polychidioid thallus and interlocking cortical cells in phylogenetically unrelated Leptogidium (Collemataceae) and Sinuicella (Peltigerales, Peltigeraeaceae).

The identity of the cyanobiont of Sinuicella denisonii as the only North American representative of Nostoc phylogroup XL (Fig. 1C; Supplementary Material Fig. S2, available online) is puzzling, considering that all other members of that phylogroup were collected from South and Central America and Germany. However, Nostoc in phylogroups XXXIX (Magain et al. 2018) and XII (Magain et al. 2017a) are similarly diverse in geographical origin, taxonomic identity of their partner/host, and biology (free-living versus symbiotic). For example, the latter group contains Peltigera cyanobionts from Asia (China and the Philippines) as well as Nostoc associated with the fungus Geosiphon pyriforme (Kütz.) v. Wettstein, the liverwort Blasia pusilla L., and the vascular plant Gunnera manicata Linden from Germany. Phylogroup XXXIX is not strongly supported in the global Nostoc phylogeny and may represent multiple taxonomic units (Magain et al. 2018). It is possible that the unusual disjunct geographical pattern observed within phylogroup XL resulted from sampling bias, but homoplasy across very similar rbcL-X sequences cannot be excluded. Phylogenetic analysis revealed further phylogenetic structure within phylogroup XL (with the cyanobiont of...
Sinuicella denisonii as the sole representative of one of three distinct, well-supported lineages; Fig. 1C). This phylogenetic pattern could indicate that each lineage represents an isolated, independently evolving population of Nostoc, rather than a single one with a broad, disjoint distribution. Sinuicella co-occurs with numerous Peltigera species (including members from section Peltigera) and multiple large populations of hornworts (probably Anthoceros fusiformis Aust.) and, therefore, all of these host species have the potential to share Nostoc phyllogroup XL (to be explored in a future study).

The existence of Sinuicella denisonii at only one known location leaves us with the problem of having just one sequence of the species as well as a description that reflects a very small population. Two of the authors (BM and DFS) have searched extensively in the Pacific Northwest for small, soil-inhabiting lichens and have not found another site. However, it was originally found in 1969 and later by us at a location close to the original, at least indicating that it is extant and reproducing. Because it looks similar to several other species, including Leptogidium contortum and Polychidium muscicola (Sw.) Gray, there is a possibility that others have collected and misidentified it. Because it is small and cryptic, we feel that publishing the description will make others aware of its existence and is perhaps the best way to facilitate discovery of other sites.

Acknowledgements. We thank Claudia Corvalán for assistance with DNA extraction and PCR, Scott LaGreca for performing thin-layer chromatography, and François Lutzoni for proofreading the early version of the manuscript. Financial support was generously provided by the Lichen Herbarium Improvement Grant from Shirley Tucker. This study was partially supported by the National Science Foundation (NSF) awards DEB SG 1556995 and BEE 1929994 to JM.

Author ORCIDs. Daphne Stone, 000-0001-5266-4958; Bruce McCune, 0000-0001-5832-9528; Carlos J. Pardo-De la Hoz, 0000-0002-7898-0948; Nicolas Magain, 0000-0001-5409-9518; Jolanta Miadlikowska, 0000-0002-5545-2130.

Supplementary Material. To view Supplementary Material for this article, please visit https://doi.org/10.1017/S0024282920000584

References

Alignment Selector toolkit for evolutionary placement and viewing of alignments and metadata on curated and custom trees. Microbiology Resource Announcements 8, e00328-19.

