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collected systematically from five sites across North Amer-
ica. Our comparison of these co-occurring interactions in 
biomes ranging from tundra to subtropical forest showed 
that the type of interactions (i.e., endophytic vs. endoli-
chenic) had a much more pronounced influence on network 
structure than did environmental conditions. In particular, 
endophytic networks were less nested, less connected, and 
more modular than endolichenic networks in all sites. The 
consistency of the network structure within each interaction 
type, independent of site, is encouraging for current efforts 
devoted to gathering metadata on ecological network struc-
ture at a global scale. We discuss several mechanisms 
potentially responsible for such patterns and draw attention 
to knowledge gaps in our understanding of networks for 
diverse interaction types.

Keywords Biogeography · Ecological networks · 
Endolichenic fungi · Endophytic fungi · Symbiosis

Introduction

Over recent decades there has been a rising interest to 
describe ecological communities as networks of interact-
ing species (e.g., Cohen 1978; Jordano 1987; Pimm et al. 
1991; Bascompte et al. 2003). The high enthusiasm for 
this approach has arisen in part because network theory 
can reveal rules of community assembly within and across 
study systems, and in part because network patterns can 
generate novel hypotheses regarding the structure and resil-
ience of particular bipartite assemblages (i.e., two guilds 
of organisms interacting together in a community context, 
such as plants and pollinators; Chagnon et al. 2012).

One major challenge when studying bipartite networks 
is to disentangle the relative influence of the various forces 
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can reveal rules of community assembly within and across 
study systems and suggest novel hypotheses regarding the 
formation and stability of communities. However, such 
studies generally face the challenge of disentangling the 
relative influence of factors such as interaction type and 
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oses, characterized by microbial species that occur within 
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which shape community assembly (Vázquez et al. 2009). 
For example, some have argued that the nature of the inter-
action itself will strongly impact network structure (e.g., 
Thompson 2005; Guimarães et al. 2007; Thébault and Fon-
taine 2010; Fontaine et al. 2011; Martos et al. 2012; Elias 
et al. 2013; Wardhaugh et al. 2015). Mutualistic interac-
tions involving sustained, close interactions (i.e., with high 
codependence) are often suggested to lead to compart-
mented networks, in which subgroups of species preferen-
tially interact (e.g., Guimarães et al. 2007; see also Ward-
haugh et al. 2015). In contrast, mutualistic interactions 
involving free-living species (i.e., with lower codepend-
ence) should lead to nested networks with a core of gener-
alist partners that reciprocally interact and specialists that 
are preferentially linked to those generalists (Guimarães 
et al. 2007). Others have proposed that mutualistic commu-
nities should be nested due to the inherent stability of such 
networks, whereas antagonistic communities should fea-
ture compartmented structures that can, for example, limit 
trophic cascades (e.g., Thébault and Fontaine 2010).

Alternatively, environmental or ecological conditions 
may affect network properties in a manner independent of 
the nature of the interaction itself (e.g., Olesen and Jordano 
2002; Albrecht et al. 2010). For example, Olesen and Jor-
dano (2002) found that plant–pollinator networks in low-
lands and at high latitudes show high connectance (i.e., a 
high fraction of potential interactions actually realized in 
the field). Likewise, Ramos-Jiliberto et al. (2010) found 
that nestedness (i.e., the tendency for a network to show lit-
tle reciprocal specialization) systematically decrease in pol-
lination networks at higher altitudes, while Albrecht et al. 
(2010) found higher nestedness in glacier forelands than in 
late successional communities.

Despite evidence that both interaction type and environ-
mental conditions can influence the assembly and structure 
of ecological networks, such factors are typically consid-
ered apart from each other. As a result, our ability to assess 
their relative importance in community assembly has been 
hampered. Here, we address this issue by using network 
approaches to characterize co-occurring communities of 
plant- and lichen-affiliated fungi. Specifically, we examine 
two types of interaction networks for the first time—plants 
and their foliar endophytic fungi (i.e., Class 3 endophytes; 
see Rodriguez et al. 2009), and lichens and their endoli-
chenic fungi (i.e., fungi that occur within healthy lichen 
thalli without causing symptoms; see Arnold et al. 2009)—
using samples collected systematically in five sites with 
contrasting abiotic conditions at a continental scale (see 
U’Ren et al. 2012). Even though the interactions represent 
different hosts (i.e., plants and lichens), endophytic and 
endolichenic fungi share numerous ecological, morpho-
logical, and functional traits. For example, both groups of 
symbionts form intimate symbioses with a photosynthetic 

partner (i.e., green algae and/or cyanobacteria in lichens; 
photosynthetic tissues of plants). Moreover, both groups 
are horizontally transmitted, form highly localized, asymp-
tomatic infections, and represent the same phylogenetic 
groups (Arnold et al. 2009). By examining closely related 
symbionts with similar interaction types in the same sites, 
which when considered together represent a wide gradient 
of abiotic conditions, we assess for the first time the rela-
tive importance of interaction type versus environmental 
conditions in shaping ecological network structure.

Materials and methods

Field sampling and molecular analyses

Fresh, mature, and apparently healthy foliage and lichen 
thalli were collected from five sites representing distinct 
environmental conditions, biological communities, and 
biogeographic regions: Beringian tundra and boreal for-
est in the Seward Peninsula ecoregion of western Alaska 
(AKN); inland, subalpine tundra in the Interior Highlands 
of east-central Alaska (AKE); the Appalachian Mountains 
of western North Carolina (NCH); the Madrean Sky Island 
Archipelago of southeastern Arizona (AZC); and subtropi-
cal scrub forest in Florida (FLA) [Electronic Supplemen-
tary Material (ESM) Table S1; see U’Ren et al. 2012 for 
detailed descriptions of the sites]. Phylogenetically diverse 
hosts were collected in each site, including plant species 
representing Bryophyta, Lycopodiophyta, Pteridophyta, 
Pinophyta, and Angiospermae (ESM Table S2; U’Ren et al. 
2012) and lichen species encompassing diverse mycobi-
onts, growth forms (i.e., foliose, fruticose, crustose), sub-
strates (epiphytic, terricolous, saxicolous), and photobionts 
(multiple lineages of green algae and some lichens contain-
ing cyanobacteria; ESM Table S3; U’Ren et al. 2012). In 
each sampling site, host collections were made in three rep-
licate microsites located approximately 30 m apart along a 
±100-m transect. In each microsite, three shoots (grasses, 
lycophytes, ferns, shrubs, or trees), one small mat (mosses; 
4–9 cm2), and at least one complete, mature lichen thal-
lus per species were collected (U’Ren et al. 2012). Focal 
plants and lichens were typically within close proximity to 
one another (≪1–10 m apart). Sampling all host species or 
individuals in each site was beyond the scope of this study, 
but by selecting phylogenetically and functionally diverse 
hosts we captured representative samples of the plant and 
lichen diversity at each site (U’Ren et al. 2012).

Within 24–48 h of collection, host tissue was surface-
sterilized by sequential immersion, with agitation, in 95 % 
ethanol for 30 s, 0.5 % NaOCl (diluted Clorox bleach) for 
2 min, and 70 % ethanol for 2 min, following Arnold et al. 
(2007). Small pieces (approx. 1 × 2 mm) were incubated 
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on a general fungal culture medium [2 % malt extract agar 
(MEA)] for fungal isolations (see U’Ren et al. 2012).

The majority of fungal isolates remained sterile in cul-
ture. They were identified using molecular methods due 
to the lack of diagnostic morphological characters. DNA 
was extracted from each isolate, and the nuclear riboso-
mal internal transcribed spacers (ITS) and 5.8S gene (ITS 
rDNA; approx. 600 bp) and an adjacent portion of the 
nuclear ribosomal large subunit (approx. 500 bp) were 
amplified by PCR and sequenced (see U’Ren et al. 2012). 
Sequences were then grouped into operational taxonomic 
units (OTU) based on 95 % sequence similarity as a proxy 
for species (Arnold and Lutzoni 2007; Arnold et al. 2009; 
U’Ren et al. 2009, 2010, 2012). Species accumulation 
curves, in conjunction with bootstrap estimates of species 
richness, suggested that the majority of culturable fungi 
was recovered for each host type and site (see U’Ren et al. 
2012), such that these data are appropriate for network 
inferences.

Overall, 4154 fungal isolates representing 359 OTU 
were evaluated in this study. Although all OTU were used 
in estimates of diversity and richness (U’Ren et al. 2012), 
singletons were removed prior to the analyses described 
here: singleton OTU would be perceived as strict special-
ists, but might instead represent rare generalists. A total 
of 267 nonsingleton OTU (comprising 4062 isolates) was 
used in the analyses described below. These were used to 
construct interaction matrices in which host species are 
represented as rows and fungal OTU as columns. Each cell 
corresponds to the number of times that a given OTU was 
found to be associated with the corresponding host spe-
cies. All statistical analyses described below were coded 
in R using the packages ‘vegan’ (Oksanen et al. 2013) and 
‘bipartite’ (Dormann et al. 2009).

Network metrics

Six aspects of network structure were evaluated for each 
interaction type (endophytic, endolichenic) in each of five 
sites ranging from tundra to subtropical forest: nestedness, 
the C-score index, power-law fit to degree distribution, 
betweenness centrality, modularity, and interaction strength 
asymmetry.

Nestedness is a tendency for ecological networks to dis-
play asymmetric interactions, in which apparent special-
ists tend to interact mostly with generalist partners (Ulrich 
and Almeida-Neto 2012). This term was originally used 
to describe biogeographic patterns of species distribution 
(e.g., Patterson and Atmar 1986) and is now considered to 
be an insightful metric for understanding species interac-
tions (e.g., Bascompte et al. 2003; Guimarães et al. 2006; 
Epps and Arnold 2010). Various metrics are available 
to quantify nestedness (e.g., Atmar and Patterson 1993; 

Almeida-Neto et al. 2008; Podani and Schmera 2012). We 
chose the NODF index (nestedness metric based on over-
lap and decreasing fill) because it is not sensitive to matrix 
shape or size and because it allows teasing apart the con-
tribution of rows (hosts) versus columns (fungal OTU) to 
the overall nestedness of the matrix (Almeida-Neto et al. 
2008). Briefly, this index calculates an overlap value for 
each species pair I and j where the number of partners of 
I is larger than that of j. This overlap value (Oij) is calcu-
lated as aij

aij+bij
, where aij is the number of partners shared 

by species i and j, and bij is the number of partners interact-
ing with species i only. At the community level, NODF is 
reported as the mean of the calculated Oij.

The C-score index has a relatively long history in com-
munity ecology. Similar to nestedness, its use was initially 
motivated by biogeographic questions. Diamond (1975) 
suggested that strong interspecific competition should 
lead to patterns of species pairs that never co-occur in 
islands/habitat patches. On a species-by-sites metacom-
munity matrix, this should translate into a “checkerboard” 
pattern, provided that the rows and columns are properly 
ordered. Later, Stone and Roberts (1990) developed a for-
mal C-score index, or checkerboard index, to quantify this 
pattern. This index has been widely used in biogeography 
(e.g., Ulrich and Gotelli 2013), as well as for the study of 
ecological networks (e.g., Gotelli and Rohde 2002; Wehner 
et al. 2014). Although the original idea was to infer inter-
specific competition from species distribution patterns, 
many other factors can generate a checkerboard pattern 
(e.g., environmental filtering and habitat heterogeneity; 
Connor et al. 2013). In a network, the C-score is calculated 
at the species pairwise level as (rI − sij)(rj − sij), where 
ri and rj are the number of interactions for species i and 
j, respectively, and sij is the number of partners shared by 
these species.

The cumulative frequency distribution of the number of 
interactions per species (i.e., degree distribution) is often 
heterogeneous, with many specialist species and a few gen-
eralists (e.g., Jordano et al. 2003). This pattern has often 
been reported to fit a power law (e.g., Beiler et al. 2010), 
where the probability P of having x links in the network is 
equal to x(−γ), γ being a constant. Using ‘bipartite’ (func-
tion degreedistr), we determined the power law constant γ 
for each network, including both hosts and fungal symbi-
onts. The higher the value of this constant, the more hetero-
geneous the degree distribution: very few species achieve 
high generalism, and most species are specialists. Such 
heterogeneity could be expected, for example, if the num-
ber of interactions of a species is proportional to its abun-
dance, and if hosts and fungal communities show a typical 
species abundance distribution with many rare species and 
few very abundant ones (e.g., McGill et al. 2007). Thus, 
the value of the power law constant can suggest potential 
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constraints to being a generalist (e.g., dispersal limitation, 
phenotypic mismatch, or other factors).

Because the number of interactions does not fully 
describe the centrality and importance of a species in a 
network, we computed betweenness centrality for all spe-
cies in our networks. The betweenness centrality of spe-
cies i corresponds to the number of shortest paths between 
any two species in the network that pass through species i 
(Freeman 1977).

Bipartite modularity is defined as the strength of sub-
division of a network into subunits, or modules, of prefer-
entially interacting species (i.e., species that interact fre-
quently together, but rarely or not at all with species outside 
their own module). This pattern may be caused by partner 
selection or by habitat heterogeneity and environmental fil-
tering (e.g., Lewinsohn et al. 2006; Chagnon et al. 2012). 
To quantify modularity in our networks, we used a simu-
lated annealing procedure to maximize Barber’s modularity 
index (Barber 2007), as implemented in the C++ execut-
able MODULAR (Marquitti et al. 2014). This modularity 

index is calculated as Q =
∑NM

i=1

[

Ei
E
−

(

kFi k
P
i

E2

)]

, where NM 

is the number of modules identified, Ei is the number of 
interactions in module i, E is the total number of interac-
tions in the whole network, kFi  is the sum of the degrees 
for species of fungi belonging to the ith module, and kPi  is 
the sum of the degrees for photosynthetic partner species 
belonging to the ith module. The optimization procedure 
for this modularity index followed a simulated anneal-
ing optimization approach. Briefly, we started with a ran-
dom partition of species within a certain number of mod-
ules and calculated the modularity index. Swappings were 
then made to the partition that can change species’ module 
affiliation and/or create or delete modules. The modularity 
index was recalculated, and the modification was accepted 
if it increased modularity. It also was accepted if it reduced 
modularity, but only in the earlier stages of the optimiza-
tion process. This latter particularity to simulated annealing 
allows exploration of many network configurations during 
the optimization process, thereby avoiding entrapment by 
local (but not global) maxima.

When interaction frequencies are collected to build eco-
logical networks, it is possible to examine interaction sym-
metry. An interaction between species i and j is said to be 
symmetric when both species share most of their interaction 
events together. Conversely, an interaction is considered to 
be asymmetric if most of interactions by species i are real-
ized with species j, but most interactions by species j are 
realized with other species. Interaction symmetry is thought 
to have considerable impact on community dynamics and 
coevolution (e.g., Bascompte et al. 2006; Vázquez et al. 
2007; Chagnon et al. 2012). We computed it as described by 
Vázquez et al. (2007): the effect of species i on species j(sij) 

is the proportion of interactions of species j that involve spe-
cies i. Then, for this species pair, we calculated the difference 
between the reciprocal effects of species i and j on each other 
(i.e., dij = sij − sji). For a given species, its asymmetry (A) 
value is defined as the mean of its d values for all its partners. 
Ai is close to 1 if species i exerts strong effects on its part-
ners while experiencing little reciprocal effects from them, 
and close to −1 in the reverse situation. Here, we evaluated 
whether hosts exerted consistently stronger or weaker effects 
on their fungal symbionts than the reverse and whether the 
pattern varied between endophytic and endolichenic associa-
tions. We did so by calculating the mean difference in A (i.e., 
Ahost − Asymbiont) for all potential host–fungal species pairs in 
each network. A paired t test was used to compare those com-
munity-level mean A values between pairs of endophytic and 
endolichenic networks within each site.

Effects of interaction type versus abiotic conditions 
on network structure

Because network structure indices did not follow a mul-
tinormal distribution (multivariate Shapiro–Wilk test, 
W = 0.43, P < 0.0001), we used a PERMANOVA (permu-
tational multivariate analysis of variance) to test the relative 
importance of interaction type (endophytic, endolichenic) 
and site identity on network structure. We also correlated 
network structure to abiotic conditions through a con-
strained ordination [redundancy analysis (RDA)] and tested 
statistical significance using permutation analyses.

Fungal frequency versus generalism

To verify whether fungal species that appeared to be gener-
alists were simply those that were more frequently isolated, 
we performed Pearson’s correlations between the number 
of isolates obtained for a given fungal species and the num-
ber of hosts from which it was isolated. Correlation coef-
ficients were compared for endophytic and endolichenic 
fungi in each site using a paired t test.

Results

Overall, network structure differed significantly between 
endophytic and endolichenic fungi (PERMANOVA 
pseudo-F1,9 = 27.6, P < 0.001). Conversely, site identity 
had no effect on network structure (pseudo-F4,5 = 0.21, 
P = 0.880) (ESM Fig. S1). Accordingly, abiotic conditions 
were not associated with differences in network structure 
(RDA; pseudo-F4,5 = 0.29, P = 0.850). Endophytic and 
endolichenic networks from five sites, ranging from boreal 
to subtropical, are presented in ESM Fig. S2.
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Nestedness, C-score, connectance, and modularity dif-
fered significantly between endophytic and endolichenic 
fungal networks (Figs. 1, 2). Endophytic networks were 
less nested, less connected, and more modular than endoli-
chenic networks in all sites (Figs. 1, 2).

More modular networks featured higher C-scores 
(r = 0.93, P = 0.0001), corroborating that some fungal 
species interacted with different hosts (i.e., belonged to dif-
ferent interaction modules) and were thus less likely to co-
occur within a given host (i.e., high C-score). Modules as 
defined by the simulated annealing algorithm are shown in 
ESM Fig S3.

Power law constants for fungal symbionts were consist-
ently higher for endophytic networks than endolichenic 
networks (paired-t = −14.8, df = 2, P = 0.004). No such 

trend was found for hosts (i.e., plants vs. lichens; paired-
t = 1.09, df = 4, P = 0.330; Table 1).

Betweenness centrality was marginally higher for fungi 
in endolichenic networks versus those in endophytic net-
works (paired-t = 2.56, df = 2, P = 0.060). For three of 
the five endolichenic networks (NCH, AZC, and FLA—the 
three most southern sites), one to two generalist fungi asso-
ciated with all host species (ESM Fig. S2). Thus, hosts in 
those networks were fully connected, and betweenness cen-
trality automatically takes a value of zero (Table 1) because 
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Fig. 1  Variation in nestedness metric based on overlap and decreas-
ing fill (NODF) (a), C-score (b), and modularity (c) according to 
network connectance. The t values come from paired Student t tests; 
r values represent Pearson’s correlation coefficients. Paired t tests 

revealed that endolichenic networks were more connected than co-
occuring endophyte networks (paired t = 5.10, df = 4, P = 0.007). 
Dashed lines are linear models fitted to the data, open circles endoli-
chenic networks, filled circles endophytic networks

0

10

20

30

40

N
O
DF

EndolichenicEndophytic

Fungi Hosts Total

Fig. 2  Contributions of hosts and fungi to network-level nestedness 
(as measured by NODF). As outlined in Almeida-Neto et al. (2008), 
NODF has been dissected into column and row components (shown 
in the left and center panels). Boxplots in the right panel show overall 
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Table 1  Variation in centrality of hosts and fungi in the networks, as 
expressed by the power-law constant fitted to the degree distributiona 
and betweenness centrality

a See the “Network metrics” section for more details
b AKN, Alaska-Nome; AKE, Alaska-Eagle Summit; NCH, North 
Carolina-Highlands; AZC, Arizona-Chiricahua Mountains; FLA, 
Florida-Archbold Biological Station
c NA values report cases in which the number of interactions had an 
insufficient number of levels (i.e., ≤5) to fit a power-law using the 
degreedistr. function. For more information see ESM Table S1; for 
full site descriptions see U’Ren et al. (2012)

Siteb Interaction type Power-law fits Cumulative between-
ness centrality

Host Symbiont Host Symbiont

AKN Endophytic 0.48 NAc 2.54 2.42

AKE Endophytic 0.42 1.5 1.51 5.41

NCH Endophytic 0.63 1.8 2.47 3.11

AZC Endophytic 0.65 NAc 2 4.01

FLA Endophytic 0.92 1.65 4.13 5.30

AKN Endolichenic 0.45 1.08 4.07 5.58

AKE Endolichenic 0.45 0.58 7 7.42

NCH Endolichenic 0.48 1.07 0 10.59

AZC Endolichenic 1.21 0.96 0 9.63

FLA Endolichenic 1.21 0.78 0 23.11
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the shortest path from one host species to another is always 
the direct path between those two species (ESM Fig. S4). 
This made a statistical comparison of host betweenness cen-
trality in endolichenic versus endophytic networks irrelevant 
as fully connected networks have the lowest host centrality.

Asymmetry of interactions

Interactions tended to be asymmetric, with hosts exert-
ing a stronger effect on their fungal symbionts than vice-
versa (Fig. 3a). This trend was stronger for endophytic net-
works than for endolichenic networks (t = −4.72, df = 9, 
P = 0.009) (Fig. 3b).

Fungal frequency vs. generalism

The number of interactions (i.e., degree of generalism) 
for endophytic and endolichenic fungi was positively cor-
related with their isolation frequency in eight of ten net-
works: interaction number (and apparent generalism) was 
strongly influenced by abundance in the field surveys 
(except for endophytic networks in sites AKN and NCH). 
Correlation coefficients were significantly higher for 
endolichenic versus endophytic networks (paired-t = 2.80, 
df = 2, P = 0.040), indicating that generalists were fre-
quently isolated from each of their lichen hosts.

Endolichenic fungi typically were isolated more fre-
quently than endophytic fungi (i.e., isolation frequency, 
defined as the proportion of tissue pieces yielding a fungal 
isolate in culture, was greater for lichens than for plants; 
see U’Ren et al. 2012). Therefore, we computed interaction 
accumulation curves to ensure that the patterns presented 
here are not methodological artifacts or spurious results 
based on underlying differences in isolation success (ESM 
Fig. S5). These show that if isolation frequency and result-
ing sample size are held constant between endophytic and 
endolichenic fungi, endophytic networks remain less con-
nected than endolichenic networks across all sites (ESM 
Fig. S5).

Discussion

Understanding the factors that shape community assem-
bly remains one of the most enduring and important ques-
tions in modern ecology. Network theory can reveal rules 
of community assembly within and across study systems 
and can suggest novel hypotheses regarding the formation 
and stability of bipartite communities. However, it is often 
challenging to disentangle the relative influence of factors 
such as interaction types and environmental conditions in 
shaping community assembly. Systematic sampling of two 
ecologically similar types of interactions (endophytic vs. 
endolichenic associations) contemporaneously and with the 
same methods in five sites across North America allowed 
us to demonstrate that in these fungal symbioses, the type 
of association (endophytic, endolichenic) had a much 
more pronounced influence on network structure than did 
environmental conditions. Those results came about even 
though there are marked contrasts in the five study sites in 
terms of abiotic conditions and associated biogeographic 
and biological history (i.e., from subalpine tundra in Alaska 
to subtropical forest in Florida; ESM Table S1 and U’Ren 
et al. 2012).
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Fig. 3  a Boxplots of asymmetry (A) values for hosts and fungal sym-
bionts in plant–endophytic vs. lichen–endolichenic networks. Each 
boxplot represents a single site, shown from left to right in each sec-
tion as AKN, AKE, NCH, AZC, and FLA (see Table 1 for name of 
each site). b Differences in asymmetries between hosts and fungal 
associates as a function of interaction type. Each data point repre-
sents a single site. Host–symbiont species pairs were repeatedly re-
sampled using a bootstrapping approach to compare their asymmetry 
scores. Values are given as the means and standard deviations based 
on 1000 bootstrap replicates. The vertical dashed line represents the 
1:1 relationship
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Interaction type

Although both endophytic and endolichenic fungi live 
within apparently healthy hosts, often represent the same 
phylogenetic lineages (and in many cases are congeneric; 
Arnold et al. 2009; U’Ren et al. 2012), were collected 
from spatially proximate hosts in replicate sampling in 
each study site, and could be isolated readily on the same 
media using culture-based methods, we found profound 
differences in the networks formed by each of these fun-
gal types and their hosts. These differences were persistent 
even when we accounted for differences in isolation fre-
quency (which we attribute to differences in tissue coloni-
zation rates rather than pervasive differences in cultivability 
between endophytic and endolichenic symbionts; U’Ren 
et al. 2012, 2014) and were persistent across the diverse 
environmental conditions represented by our study sites.

In particular, our analyses revealed that endophytic net-
works were less nested, less connected, and more modu-
lar than endolichenic networks. Accordingly, the C-scores 
for endophytic networks were also higher than those for 
endolichenic networks. It is well known that nestedness 
(here quantified using the NODF index) is positively cor-
related to connectance (e.g., Almeida-Neto et al. 2008), 
leading us to evaluate the hypothesis that discrepancies 
between endophytic and endolichenic networks may sim-
ply reflect differences in connectance. Our analyses of 
degree distribution and centrality show that lichens tend to 
have a higher proportion of central, generalist fungi; these 
generalists increase network connectance and are likely to 
be important in shaping the nestedness of these network 
structures. Although endolichenic fungi are often host-gen-
eralists with regard to the lichens in which they occur, they 
are more closely related to endophytic symbionts than to 
saprotrophic fungi, suggesting that their associations with 
lichen thalli are not purely incidental (U’Ren et al. 2010, 
2011). This observation is further illustrated by the occur-
rence of a minority of nonsingleton OTU in both plants and 
lichens (ESM Fig. S2).

The higher modularity of endophytic networks may sug-
gest that plant hosts select more strongly than lichens for a 
specific subset of fungal partners. For example, fungal OTU 
found in both plants and lichens (including endolichenic 
generalists) are often restricted to a specific group of plants, 
such as bryophytes (see ESM Fig. S2; see also U’Ren et al. 
2010). Plants surveyed by U’Ren et al. (2012) represented 
a much broader phylogenetic and phenotypic range (from 
Bryophyta to Angiospermae) than did the photobionts 
or mycobionts present in most lichen thalli (e.g., Miad-
likowska et al. 2006). Such plant diversity encompasses 
major differences in structural and chemical defenses, 
mechanisms for nutrient transfer to fungi, and physiologi-
cal traits. As for other fungal communities (Chagnon et al. 

2013), a focus on particular functional traits may detect 
mechanisms that differ markedly among plant taxa and thus 
influence the assembly of endophyte communities (such 
as foliar chemistry, Arnold and Herre 2003), but differ less 
among lichen photobionts (with which endolichenic fungi 
preferentially associate more frequently than mycobiont 
components of the thallus; Arnold et al. 2009).

In turn, symbiotic fungi may face a trade-off between 
generalism and competitive ability within a host (e.g., Wil-
son et al. 2003). In particular, specialized fungal networks 
may represent species that are better competitors in par-
ticular hosts in which they are found—but those fungi may 
perform poorly on other hosts, with the ability to interact 
decreasing as phylogenetic distance between the original 
and new hosts increases (see Gilbert and Webb 2007).

Conversely, the apparently higher specialization of 
endophytic fungi may reflect dispersal limitation (but see 
Tedersoo et al. 2014) or low abundance in the sampled sites 
(i.e., niches that are realized, rather than fundamental). 
For endolichenic networks we found consistently strong 
and positive correlations between the frequency of isola-
tion of each endolichenic fungal species and its number of 
host species; this pattern would better fit a realized niche 
scenario, where generalist symbionts are simply those that 
are widespread in the landscape. Conversely, in endophytic 
networks, such correlations were either weaker or non-sig-
nificant, indicating that some symbionts were abundant in 
a small subset of host species (often in a single one) while 
being rare at the whole network level. This pattern would 
be consistent with a fundamental niche scenario, with some 
fungal species specializing on a few preferred hosts. In 
this case, phylogenetic distance and functional differences 
among hosts, which was greater among plants than among 
lichens in the communities sampled here, may play a key 
role.

Interpreting nestedness

Passive sampling can generate a nested pattern in interac-
tion networks because interactions between rare species are 
inherently harder to sample (e.g., Blüthgen et al. 2008). In 
such cases, poorly sampled species have a set of interac-
tions that are nested in those of more intensively sampled 
species (i.e., interactions with abundant, generalist part-
ners). In our datasets, the sampling effort was always con-
trolled for hosts, but it could not be controlled for fungi: all 
endophytes and endolichenic fungi that emerged in culture 
were isolated and enumerated. Given that NODF analysis 
can distinguish between nestedness of hosts versus fungal 
symbionts, we would expect fungi to increase overall net-
work nestedness through an artifactual effect of passive 
sampling of their interactions, while hosts would not. Yet 
we observe similar trends of interaction nestedness for both 
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hosts and fungi, suggesting that mechanisms other than 
passive sampling yield nestedness in our system.

As suggested in previous biogeographic studies (Pat-
terson and Atmar 1986), our results are consistent with 
the interpretation that co-occurring hosts may constitute a 
stress gradient for fungal symbionts: hosts with fewer part-
ners may offer more stressful environments by being bet-
ter defended against particular microbial invaders, limiting 
nutrient accessibility for symbionts, or investing less to the 
symbiosis. This mechanism has been referred to as selec-
tive extinction in the biogeography literature, as stressing 
agents selectively exclude intolerant species. Previous stud-
ies have revealed environmental effects on fungal symbi-
onts in this context: for example, Verbruggen et al. (2012) 
reported that the distribution of arbuscular mycorrhizal 
fungi was nested along a land-use intensification gradient, 
in which agricultural intensification progressively sorted 
out species intolerant to agriculture-related stresses. Our 
results are consistent with a stress gradient that differs 
among hosts, rather than sites that differ in environmen-
tal conditions, and merits further study using culture-free 
approaches and quantitative evaluation of defenses, related 
functional traits, and host-microbial feedbacks (see Friesen 
et al. 2011).

Perspectives on null model approaches in this study 
system

When comparing network structure among sites, it is gen-
erally preferable to transform network structural indices 
as z-scores first (Ulrich et al. 2009). This can be done by 
comparing the structure of a single network to its struc-
ture when it is randomized following a given null model. 
This procedure eliminates the biases in network structure 
induced by matrix shape, fill, and symmetry (number of 
rows vs. number of columns). However, our networks had 
a very low connectance and a very high asymmetry (i.e., 
many more endophytic and endolichenic species than host 
taxa). In such conditions, a constrained null model (e.g., 
fixed row sums, column sums, or both) does not efficiently 
randomize interactions because those conditions consider-
ably reduce null space. Accordingly, we observed that a 
null model with fixed row and columns sums (as suggested 
by Ulrich and Gotelli 2013) yielded endophytic networks 
with lower z-scores for modularity than the endolichenic 
networks, while they are clearly more modular (as each 
plant species almost has its own exclusive set of endophytic 
fungi). Thus, due to these low connectance values and high 
network asymmetry, we used crude network structure indi-
ces instead of z-scores: the latter provided counter-intuitive 
and misleading results.

Culture‑based versus culture‑independent approaches 
in host–fungal network characterization

We characterized endophytic or endolichenic fungal net-
works using an approach that is dependent upon the suc-
cessful culture of these fungi under laboratory conditions. 
This approach is likely to capture only a subset of fungal 
taxa: for example, culture-based assays frequently miss lin-
eages that are detected by PCR-based surveys (e.g., Basidi-
omycota; U’Ren et al. 2014). However, some fungi that 
are recovered in culture remain undetectable when culture-
independent techniques are used (see Allen et al. 2003; 
Bougoure and Cairney 2005; Arnold et al. 2007; Higgins 
et al. 2011; U’Ren et al. 2014). Moreover, although infer-
ences regarding the taxonomic composition of communi-
ties may change between culture-based and culture-inde-
pendent approaches, major ecological conclusions often 
remain the same (Arnold et al. 2007; U’Ren et al. 2014). 
Culture-based studies provide isolate libraries that can be 
used in functional trait analyses or inoculation experiments 
to test hypotheses generated by network analyses. In future 
work, we recommend that network analyses consider endo-
phyte and endolichenic communities using both culture-
based and culture-free data sets for the same hosts, with 
the results of our study providing a first perspective on the 
structure of networks in these prevalent symbioses.

Interaction asymmetry and open questions

Relative to endolichenic networks, we show that endo-
phytic networks have consistently more asymmetric inter-
actions, with hosts exerting much stronger effect on their 
symbionts than vice-versa. Such network structure may 
have important consequences for coevolution, as high 
asymmetry should translate into strong selection by hosts 
on their symbionts. Thus, our work draws attention to sev-
eral key knowledge gaps: (1) Can fungi that have not been 
isolated from a given host be good competitors in that host 
taxon under different conditions or at different ontogenetic 
or seasonal time points? (2) If hosts are confronted by a 
standard mixture of fungi in a controlled environment, do 
we still see the nested distribution of their interactions as 
in the field? (3) Are fungi that specialize on a given host 
better competitors than generalist fungi in that host species, 
and to what degree is that context-dependent? (4) Is there 
local adaptation of fungal populations to their host popula-
tions (e.g., Johnson et al. 2010), or do other populations of 
the same fungal species perform equally well on a given 
local host? (5) Do tropical environments favor an increas-
ing number of generalists compared to temperate, boreal, 
and arctic environments, as suggested by survey data (e.g., 
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Arnold and Lutzoni 2007; see also Tedersoo et al. 2014)? 
The interesting aspect of these host–fungal systems is that 
they are relatively amenable to experimentation in compari-
son to other study systems in which network studies began 
(e.g., plant–pollinators, plant–seed dispersers, fish–ectopar-
asites; see Chagnon et al. 2012). This offers new and excit-
ing opportunities to disentangle ecological network assem-
bly rules by empirically testing competing hypotheses and 
strengthening inferences (sensu Platt 1964), instead of rely-
ing on correlative/likelihood approaches alone.

Conclusion

We showed here that even for ecologically and phylogenet-
ically similar symbionts, interaction type can have a much 
more pronounced effect than environmental conditions on 
network structure. This finding is encouraging for efforts 
devoted to gathering metadata of ecological networks at a 
global scale (e.g., http://www.santafe.edu/gevent/detail/
science/1138/), where local abiotic conditions vary drasti-
cally from one network to another. It also supports earlier 
findings linking interaction type to network properties. Pio-
neering work in network approaches to community ecology 
tended to group interaction types into relatively coarse cat-
egories (e.g., mutualisms/antagonisms, high/low intimacy 
associations); here, we show that two similarly intimate 
symbiotic interactions involving phylogenetically related 
fungi contrast sharply in their network structure, with such 
contrasts repeated across environments that differ in the 
specific taxa present and the abiotic factors they experi-
ence. Such insights can complement previous work (e.g., 
Thompson 2005; Guimarães et al. 2007; Thébault and Fon-
taine 2010) to suggest new perspectives on how to organ-
ize interaction types for network-driven insights, especially 
with regard to finer scales that can untangle the drivers of 
network assembly and dynamics.
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